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ABSTRACT
Positioning is one of the main tasks of geodesy. In order to define the position of any
point on the earth's surface, it is necessary to determine its position referred to a (2D) or
(3D) coordinate system. The geodetic-positioning network in Egypt has been
traditionally established at the first decades of the last century. Helmert-1906 ellipsoid
is adopled and injtial point (F1) was chosen, so the Egyptian datum is defined at thal

time.

Nowadays GPS plays an important role in establishing the global and national
positioning networks. GPS is also used in strengthening the old (traditional) national
networks. GPS is precise technique compared with the traditional ones. For example.
the original Network 1 in Egypt has a precision around 1 : 100,000. While the GPS
network (HARN), made by Egyptian Surveying Authority (ESA) in 1997, has a

precision of 1 : 10,000,000 which is 100 times more accurate.

The traditional network of Egypt is defined on Helmert 1906 which is a local datum.
GPS networks are defined on the Geo-centric datum WGS-84. So, for many obvious

reasons, coordinate transformation between the two systems is required.

Obtaining a definite-precise set of tramsformation parameters is a goal of many
researchers. The transformation process depends on some factors among them is the
used mathematical model. Obtaining transformation set of parameters is not the targel
of this research. The subject of this research is studying different transformation models

and investigating the best among them.

Several transformation models are applied and investigated using different solutions.
The results are tabulated and represented in histograms for the sake of comparisons. The

best model is chosen in the case of 2D and 3D transformations.
1-1atroduction

In Egypt, the firsi order geodetic triangulation network started at 1907 used Helmert
1906 as a reference datum. In 1977 the American Defense Mapping Agency (DMA}
established the first satellite stations known by DOPPLER system which used a
geocentric datum (WGS-72), and in 1990 the Finnmap project established 300 control
points depending on the world geodetic datum (WGS-84). In 1997, ESA established
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the High Accurate Reference Network which is knmown as (HARN). Other GPS
networks are initiated in Egypt and they could be connected to the Egvptain network to

strengthen the geodetic field.

So. the transformation process between two different datums, using transformation
parameters. is required. In this research, the goal is not to obtain new transformation
paramelers between the Local Egyptian Datum (LED) and the global {WGS-84) datums.

The goal of this research is to investigate the best model which can be used in the

transformation process.
2- Previous Works

|Bekheet, A. 1993] applied two transformation models namely Bursa model and first
order polynoniial in two dimensions. He applied the two models to find relationships
among the three datums LED. WGS-72, WGS-84. He used 8 common poims in the
solution and there were no check points to assess the results. The residuals at the used

solution points showed that the used polynomial gave better results than Bursa model.

[Abd-Elmotaal, H. 1994] presented the comparison of polynomial and similarity
transformation based datum shifts for Egypt. He used 8 common points from first order
geodetic stations known in both W(GS-84 and old Egyptian datum as the solution points.
These points are located in the Egyptian eastern desert, and thier W(GS84 coordinates
have been taken from the results of Finnmap project, 1989. He also used geoidal
undulations computed by Finnmap, and there were no check points. The results showed

that the used second order polynomial is better than the similarity transformation, Busra

model.

[Fayad, A. T. 1996] studied three transformation models ( Moldonsky. Bursa, and ten
parameters). He used 8 common points and determined the transformation parameters
for each model. Also he determined the residuals at the solution points. and no check

points are used. The ten parameters model was shigtly better than the similarity models.

[E}-Tokhey. M. E. 1999] computed the transformation parameters between the
Egyptian datum and WGS-84. Two models (Bursa model and two dimensional-second

order surface polynomial) are employed. Fifteen common points are used. They are
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first order points taken from the final adjusted coordinates of [Awad, M. E. 1997]. They
are also defined on WGS-84 through the High Accuracy Referance Network (HARN).

the derived transformation parameters have been checked at other 16 stations from the
Feyptim Asiation Authority (EAA). The results showed that the used polynonial 1s

hetion than Bursa maode).

[Gomaa, M. and D. S. Alnaggar, 2000] presenied the optimum geodetic ditum
tunslormation techniques for GPS suneys in Egypt using (similarity models Bursa and
Mulodenshyi and (two  dimensional-multiple regression surface polynomials) The
abable  coordinates werel9 first order stations hnown in both  WGSHd and old
I'eypuan datum Fifieen points were used as solution points. The GPS coordinates are
taben Irom (HARN) and the remaining stations hive been observed by the Sun oy
Ruscarch Insitute (SRI) as part of the Egyptian National Standardization Granin
Network (FNSGN9T). Four stations have been considered as check points. The results
shoved that multiple regression surface polvnomial is better than Bursa and

Mo 'ldu‘l'i.\k_\

3- Transformation Models
In this sectton. the used transformation models will be classified and explained. The

muodels are firsthy classified into two main groups as follows:

used matheTatica] models

Group | Group 2

i | l |

Simitarity Affine Polynomial(2D) Polvnonualt 30
normal & normal &
conformal conformal
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3-1 Group (1)

3-1-1 Similarity Transformation in Three Dimensions

Similarity means that the scale factor is the same in all directions. When transforming
from ome spatial coordinate system to another we need seven parameters (lincar
conformal) three parameters for translation. one scale factor and three rotation
parameters. Bursa and Molodensky models will be used in this research and arce

explained as foilows [Thomson, 1976];

i) Bursa Model

This model is considered as the most common model in determining transformation
parameters between any two different 3D coordinate systems. The mathematical form of

this model is given as:

Xom(I+K)R X —xp=0 {h
Where
Xo @ is the translation vector between two origins of coordinate
system

R : Rotation matrix = R1 (wx) R2 (wy) R3 (wz)

1+K : Scale factor
Xp : Position vector of terrain point “P” in one system
Xp : Position vector of terrain point "P" in the other system

To solve for the seven unknown parameters, at least three common points defined in
both systems should be available. To apply the least squares adjustment we need 3

common points at least. For more details about least squares adjustment. reference is
made to [Nassar, 1981].

ii) Molodensky Model
This model describes the relation between any two different 3-D coordinate svsiems by
seven parameters. It is described mathematically as:

Xo + Xi+ (1 +k) R AXip- xp =0 (2)

Thc equation is similar to Bursa model except the new vector (Xi) which is the position

vector of the initial point (i). Also the axes of the two systems arc parallel so that the




rotation and the scale are only applied on the vector AXip between any point and the

inital point.
3-1-2 Affine Transformation in 3D (Ten Parameters Model)

Affine Transformation considers different scale factors along the different axes. The
coordinates in three dimensional terrestrial systems are derived from a horizontal
triangulation and/or trilateration networks and from leveling networks (plus ellipsoidal
heights if available). The scale of these two different networks, horizontal and vertical.
is different. In addition a systematic distortion should be accounted for in both
horizontal and vertical networks. The ten parameters transformation model accounts for
these two main sources of errors [Fayed, A. T. 1996], the 1en paramieters are;
%o Yo- Z. :  The shift components between the terrestrial and the satellite
coordinate systems.
Wy, Wy, W, @ The rotation elements of the local geodetic system, at initial

point of the terrestrial network, with respect 1o the terrestrial

system.
a : The horizontal direction of the maximum scale distortion.
k).k» : The scale factors which model the distortion in the

horizontal plane of the terrestrial network.
K: : The scale factor which models the distortion in the vertical

direction of the terrestnal network

The basic idea is considering the coordinates of satellite geocentric coordinate system

(X. Y. Z) to be transformed into terrestrial coordinale system (X, y, 2).

The final wransformed point vector to the terrestrial coordinate system is indicated by x,,.
while Xo is the shift component vector between the geocentric and the terrestrial
systems. Neglecting the second order terms, the linearized form of the transformation

equation takes the following form:

%p = Xo+ X, + M (dR + dS) M X, (3)

where:
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—sing; cos4; -—sing;sind; cosgy;
—sin 4; cosd; 0

b cosp; cosA;  cosg;sind;  sing; )

The least squares adjustment of observations and independent parameters can be used to

obtain the ten unknown transformation parameters.

3-2 Group 2: Coordinate Transformation Using Polynomials

Polynomial equations are used to represent different shapes of surfaces depending on
the degree of 1he polynomial. The first-degree polynomial trend surface is a planc.
withow any curvature. The other degrees of polynomial shows different curved surfaces
depending on the number of the used coefficients. The surface is normaliy used to best
fit the data points with minimum differences. The produced surface is tesled by the
residuals at the data points and at other check points. The confidence on the polynomial
depends on the number of the used data points, their quality in both systems, and their

distribution in the considered area.

3-2-1 Coordinate Transformation Using 2D Polynomials

The polynomials used in two dimension transformation are classified in the following

diagram:
Polynomial equations in 2D
Homogenous Non- Homogenous
|
L urvilinear Curvilinear multiTle relgrcssion
|
INormaI Conforma']-“ ' ISepamted mixed coolrdinalcs
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Homogenous means relating two coordinate systems of the same type to each other. i.e.
¢. A 1o ¢, A' Non-Homogenous means relating two different types of coordinate
system to each other. l.e. 9, L 10 X, Y.

3-2-1-1 Homogenous Polynomial in Two Dimensions

(i - a) Curvilinear Normal Case in 2D

This model computes corrections 10 ¢ and A 1o change them into corresponding values

in the other system. The mode] takes the form:

Ap=a,+ap+ a;?.+a_1(p:+m(ph+a57.l+ (5-a)

A% = by = by = bar. + by@” + bypit bail + . (5-b)

The polynomials can obviously be extended to higher powers in ¢ and 7. where (in the

casc of transforming WGS84 coordinates to Helment 1906 coordinates);
AP = @ ywased = @

¢ . » geodetic coordinates in WGS84.

aandb . i=0ton arethe unknown coefficients of the polynomial.

(i— b) Curvilinear Conformal Case in 2D

The conformal property preserves the angles between intersecting lines afier the
transformation. The conformality could be applied through the two following
polynomials using same symboles as equations 5-a, 5-b [Anserson, J. M. and Mikhail,

E. M. 1998):

Ap = ag+ a1 +axh +ay (@ 23 )+ aph ... (6-a)
Ak =b, + 1@ + bak. + ba(g™- A2 )+ byg) ... (6-b)

(ii) Curvilinear Multiple Regression

The polynomial regression mode! applied to transform between GPS and local systems.
The model will he applied in two styles:

(ii - a) Separated Coordinates

The multiple regression process starts by fitting a linear function. the procedure then
sequentially adds one variable at a time to the equation. Finally, the polvnomial takes

the fonm |Gomaa. M. and D. S. Alnaggar, 2000]:
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Ap=a,+aip+ ah+ ayp° +ay’ +ash® +aht + a;p" + agh? (7-a)
A% =by+ bk + bag + bak? + bk’ + bsp? + beg® +biA%+ byg® (7-b)

(ii - b) Mixed Coordinates

In this model we relate the coordinates 10 the centroid point in the area, and add onc
vanable to the equation after first order case as:

AP = 20+ 4@ - P+ Ax(h-Pem) + 23 (@ - Prn)™F a( - i) (Do) + AslD-hm) (B-2)
377 B = Dil@ = @uu)+ batdnrum) b3 (@ - @)+ Bl - Qo) (2-hm) ~bs(Aein) . (8-b)

where om and 2.m are the geodetic coordinates for centroid point at (WGS84)

3-2-1-2 Non-Homogenous Case in 2D
This model computes corrections to the rectangular coordinates X.Y.Z from ihe

horizontal coordinates « . 7. of the other system. The polynonuuls take the forn:

AX = a,* ap + sk + a_z(p:-— agpr + ashi+ ... (9-a)
AY = bu+ by + bak + by = byph + b + ... (9-b)
AZ = eyt i + okt Capl + capd + cshT + . (9-c)
where :

AX = Xiwowwn = X gum

3-2-2 Coordinate Transformation Using 3D Polynomials
Coordinate transformations using polynomials in three dimensions are employed in tlis

rescarch as Jollows:

Polynomial equations in 3D

Homogenous Non- Homogenous

Curvilinear Cartesian

|
| o

Normal Conformal
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3-2-2-1 Homogenous Polynomials in 3D

{(i—a) Curvilinear Normal Case in 3D

This model relates the changes in (9, A, h) in a system function of (¢.A, h) in the second
sysiem through normal polynomiais as follows:

Agp = a, + a;0 + ax2 + azh +a.:q>2+ ash? + a,h® + a;0A + agph + aghh (10-a)

Al = by + by + by + byh +byp>+ bsh’ + beh? + byod +bgoh + bokh (10-b)

Ah = ¢y + i1+ ek +c3h +eypt + csh’ + cgh’ + cyph + caph + coith (10-¢)

where :,
o . ». h geodelic coordinates in WGS-84

(i ~ b) Curvilinear Conformal 3D Case

This model is exactly like the above model except it uses conformal polynomials as

foilows:

Ap= a,~a@+al+tah+ a,((pz- 22 112) + asph + agph ... (11-a)
A7 = by + by + byh + byh + ba(-g> +A7 - h')+ bspA + beAb ... {11-b)

Ah= ¢yttt +eh+ t:_,(-(p2 224 h) +esph+cehh Lo (11-c}

(ii ) Cartesian 3D Polynomials

This model retates two Cartesian coordinate systems {X,Y,Z) and (x, y, z) to each other

as follows:

AW=a,+ax +ayy+az+ a.,-x2 + a_;y2 + a(,z2 + ajXy + agxz + aoyz + ... (12-a)
AY = by + byx + bay + biz + bax? + bsy? + bez’+ brxy + baxy + bexz + ... (12-b)
AZ =cytex+oytczt cax? + c_<3r2 + c¢.12 +Cxy+cgxz+coyz + ... (12-¢c)
where : '

AX = Xwasen = X (LED

X, ¥.z geodelic coordinates in WGS-84

3-2-2-2 Non-Homogenous 3D Polynomials

The model relates Cartesian 3D coordinates (X,Y,Z) in a system, to the corresponding
curvilinear (¢.2..h) coordinates in another system as follows:

AN= 2+ 2, + asi. + ash +ayp+ ashl +ah’ + axph + agph + ackh ... (13-2)

AY= b+ by + bk + bah +bap™+ bsd? + beh? + bygh +bggh + burh ... (13-b)
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AZ = ¢, + cp+ c;l + clh +C.‘;(P2+ 0512 + C(,hz o C'i(P)\- + CS(Ph +cohh L. (]B'C)
where AX = Xowaisse - X (D)

4- The Data Used in the Computations

4-1 Number of Known Points Needed in Computations

To determine the relation between any two different coordinate systems, common
points are needed. The minimum number of these points depends on the used model and
its degrec. If the available points exceed the minimum. least squares adjustment can be
used to obtain the best solution. So, the following are the unknown parameters and th

needed minimum data points for each model:

Table (1) Number of unknown parameters and required data poinis.

o '-Degrce “|"Noof. | No of minimum

b id oA Fade o, rLLI"nl::nov.'ns points
Bursa and Molodensky 7 3
Ten parameters 10 4
2D Polynomials
Homogenous curvilinear normal 1* -order 6 g

Homogenous curvilinear conformal
Non-homogenous

Homogenous curvilinear normal 2" —order 12 6
Non-homogenous 2" _order
Multiple regression mixed 6-terms
Homogenous curvilinear normal | 3" -order 20 10
Non-homogenous
Homogenous curvilinear conformal | 2™ -order 10 5
Multiple regression mixed 5-lterm
Homogenous curvilinear conformal | 3" -order i4 7
Multiple regression mixed 4-term 8 4
3D Polynomials
Homogenous curvilinear normal 1*' -order 12 4

Hamogenous curvilinear conformal
Homogenous Cartesian
Non-homogenous

Homogenous curvilinear normal 2™ _order 30 10

Homogenous Cartesian
Non-homogenous

Homogenous curvilinear conformal | 2™ -order 21 7
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4-2 Data Sources

The available daia used are obtained from three sources. The first is the Egyplian
traditional triangulation networks which are related to Helmert-1906. The altitudes of
the statjons in ESA are modified into ellipsoidal heights through the geoid mode!
{SRI2000B). The second set is taken from different (GPS) networks (HARN and
Finnmap) after unifying them [Saad, A. 1998], they are related to WGS-84. The
precision of HARN vectors is 10,000,000 |ESA Report, 1997]. The total number of
common poinis are 28 points bul as we mentioned before, the data have differemt
sources, with different accuracies. Therefore. a filtering scheme is followed to obtain
consisient data set for the proposed computations. The filtering scheme is donc on ino

slages;

First stage; using all the available common points, the resultant difference vectors at all

points are computed as follows:
R= vV {(Xwass: - X en)’ HYwosea- Y LED)+ (Zwasas— Zien)

“Mean and standard deviations (o) are computed for the resultant residual vectors. The
station with residual greater than 3o is rejected. After applying this filtering, 16 stations
are used. Second stage; using the above mentioned 16 'points, adjacent triangles are
traced. At every triangle, the differences in coordinates between the two systems (AN.
AY. AZ) were calculated at the three vertices. The station with odd values was rejected.
Thirteen s1ations are accepted after applying this filter. The final common points are 13

points, covering the eastern desert of Egypt, as illustrated in Figure (i).
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Figure (1) Configuration of the common points used in the study

5- Applications and the Results

Solutions based on the above mentioned models are done. . .- available 13 common
points are divided into two groups. The first is used in con, ~.uting the transformation
parameters (data or solution points); residuals are computed at these stations. The
second group is used as check points and the residuals are computed also at these check
points.

Recalling that, obtaining transformation parameters is not our concern here, so they will
not be represented. In [Abd-Elhay, 2004], detailed results are shown; statistics of the
residuals at the data points and at the check points are tabulated and presented in
histograms for the sake of comparison. In every solution and al every point. the
residuais of the coordinates and their resultants are shown in one column. The resulls
arc analyzed and the best model for coordinate transformation is chosen. In this
research, only summary of results are presented.

5-1 Group (1)

a- Simllarity Transformation using Bursa Model

The mathematical model of Bursai equations (I), is applied. Then, the residuals at the

solution points and their statistics are computed. The residuals at 4 check points are also
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computed. The residuals at check points did not significantly change from the residuals
al the data points.

b- Similarity transformation using Molodensky model

The mathematical model of Moldensky, Equation (3), is applied three times using three
different initial points. Firstly, the initial point was the real initial point of the geodelic
network of Egypt (O1). Secondly, the initial point was (M3) which is the nearest point
to the center of the area covered by the available data. Lastly, the initial point was the
imaginary (calculated), center of the study area.

The residuals are computed at the data points in the three solutions. The three solutions
have identical results, i.e the model is not affected by shifling its centeral point. The
statistics of the residuals at the dala points are computed. The residuals at the check
points are conmpuied from the three cases and they were also identical. Molodensky
again is similar to Bursa model where it behaves the same way towards both data and

check points.

- ¢- Affine Transformation Using Ten Parameters Model

The mathematical model of the ten parameters model, Equation (4), is applied three
limes using three different initial points, similarly as in Molodensky case. The
transformation parameters are computed in every case. The residuals at the data points
are also compuied and they are identical from the three cascs, their statistics are also
computed. The residuals at the check points are computed and they are also identical
from the three solutions. The ten parameters model reacts the same way towards data

and check points

d- The Best Solution for Group (1)
The residuals at the data points from the three models, Bursa, Molodensky, and Ten
parameters are collected in order 10 choose the best model among them. The statistics of

ther resultant residuals are shown as follows:

Table(2) Statistics of resultant residuals o data points using three maodels in group |

Statistical data Bursa Molodensky Ten paramelers
Resultant m Resultant m Resultant m
Min 0.26 0.26 0.22
Max 1.85 1.85 1.81
Mean 0.75 0.76 0.67
ST dev. 0.51 0.51 0.49




The resultant residuals at the data points from the three models in group 1 are collected

and represented as follows:

GROUP (1)

comparison between different models for data polnts

18
16
1.4
1.2

[oF.]
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absolute vatue for residual by {m
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Figure (2) Resultant residuals of group (1) models at data points

From Table (2) and Figure (2) above, it can be seen that the affine transformation (10-

parameters) model gives small residuals than the other two modeis which are alrcady

identical.  So. the best model in groupl, at solution points is the (Ten parameters)

model The resultant residuals at the check points from the three solutions are shown in

Table (3) and represented in Figure (3) in order to compare the models at those poinis.

Table (3) The resultant residuals at check points using medels of group (1)

Resultant Resiguals m
POINT Bursa Molodensty 10- paramete’s
A5 1.81 1 84 185
G1E 0.18 0.18 0.38
G2~ 055 0.55 063
O 1.10 1.10 092
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GROUP (1)
comparison between different mode! for check points

absolute value for residual by
{m}

points

aBuwsa C moldensky Ten paramieters

Figure (3) Resultant residuals of group (1) models at check points
From the above table and figure, it can be seen that the similarity transformation (Bursa

and Molodensky) give small residuals than the ten parameters mode! at three points
from the four check points. Bursa and Molodensky models give the same results. So, the
best model at check points is (similarity transformation), Bursa or Molodensky.

5-2 Group (2); 2D Surface Polynomials

The practical applications in 2-dimensions will be done for all cases and using all
possible orders. Two main branches will be treaied, homogeneous and #on
homogeneous cases.

5-2-1 2D Homogeneous Case

2- Homogenous Curvilinear Normal Case

The first, second and third order polynomals are applied as in Equations (5). The total
number of unknowns in the third order equations are 9 unknowns. So two more points
are required to have redundancy, and these points are (O1), and (AS).

For the different polynomial orders, the residuals with their statistics of ¢ and % are
computed at the used data points. The resultant residuals are also computed with their
statistics. From the results, it is found that the second erder is better than the firsi and
the third is better than the second order polynomials at the solution points.

The resullants of the residuals are also computed at the check points. In inverse

proportion with the cases of solution points, the polynomial has bigger residuals with
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higher orders at the check points. This means that high order polynomials 13t betier the

data but they are not modeling nicely the situation.

b- Homogenous Curvilinear Conformal Case
Equations (06) are applied for first, second and third orders in both cases of ¢ and 2. The

residuals at the data points are computed. The resultant residuals of (¢ L) arc also

computed with their statistics.

At the solution points. the third order is better than the other two. The resultant residuals

of (¢ .%) are also computed at the check points. At the check points, the first order is

better than the other two.

c- Homogenous Curvilinear - Multiple Regression Polynomial

c-1 Multiple Regression Separated Coordinates

Equations (7) are applied with four, five. six, seven, and eighi terms in both cases of
and 2. using the available data points. The residuals at the data points are computed. The
resultant residuals are also computed with their statistics. It is found that the eight-term
polynomial is the best at the data points.

The resultant residuals of (¢ .2) at the check points are computed. It is found that the six
terms polynomial is betler than the others at the check points.

¢-2 Homogenous Curvilinear Multiple Regression-Mixed Coordinates
Equations (8) are applied. the residuals at the data points. in both cases of ¢ and X are
computed with their statistics. 1t is found that while the terms of the polynomial
increase. the values of the residuals decrease and the best polynomial in fitting the
solution points is the one of 7 terms.

The resultant residuals of (¢ ,%) at check points are computed. Statistics of the resultant
residuals at the check points are computed. The five terms polynomial gave less
residuals than the other polynomial at the check points.

d- The best model among 2D Polynomial- Homogenous cases.

Recalling tha. the applied polynomials, till now. are the 2D homogenous ones. The
companison will be among the resultant restduals of ¢ .. To conciude a result. the

followmy stauistics are coimputed at the data points;
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Table (4) The statistics of resultant residuals at the data points in m.

Normal Conformal Multiple regression Mulliple regression
Point 3-order 3-order Separated 8-terms mixed 7-terms
Min, 0.00 0.01 0.12 0.06
Max 0.01 0.13 0.26 0.66
Mean 0.00 0.08 0.18 0.29
ST.dev. 0.00 0.04 - 0.05 0.19

Al the data (solution) points. the bes polynomial is 3" order normal then 3" order
conformal then 8-terms separated multiple regression then 7-terms mixed muliiple-

regression. The results of the best solution. at check point, are collected as:

Table (5) The resuitant residual values at check points in m.

Normal Conformat Multiple regression Multiple regression
Pomnt 1-order 1-order Separated 6-terms Mixed 5-terms
A5 0.80 0.80 087 0.65
518 0.57 0.57 0.72 111
G27 0.54 - 0.54 0.58 0.25
01 0.73 0.73 033 0.31

The best solution at check points is the fifih order-multiple regression mixed case. This
solution is a little bit better than the 6-terms separated multiple regression. The resuliant

residuals from all above solutions are represented as follows;
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Figure (5) Resuitant residuals from best solutions for 2D polynomial homogenous case
at check points

5-2-2 Non -Homogenous 2D Polynomials

Non-Homogenous means relating (X.Y, Z) of one system to the corresponding (¢ .2.) of
the other system. Equations (9) are applied in three orders and the coefficients are
computed. The residuals in X, Y, and Z coordinates, at the dala points are also
computed with the statistics of their resultants.

1t is found that the third order gives less residuals than the other two, at the solution’

points. The resultant residuals are also computed ai the check poims. The first order

polynomial is better at the check points.
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5-3-3 The Best Model in 2D Polynomials Group
The best models in the homogeneous polynomials are compared with the Non-

homogenous polynomials. The results at the data points are tabulated as:

Tablc (6) Resultant residuals at the data points

Resultant for solution points by (m)
Homogenous. Normal | Non-Homogenous.

Points {3- order) (3- order)
05 0.00 0.01
Al1 0.01 0.17
E? 0.00 0.01
F6& 0.00 015
G16 0.01 030
G20 0.00 0.12
G21 0.00 0.08
G23 000 0.04
M3 0.00 0.01

Although the resultant of the normal polynomial is horizontal and the one of the non-
homogenous polynomial is in 3D. the table shows thai the former is fitting the daia
points better than the latter. The same comparison is made at the check points and it was

as follows;

Table (7) Comparison at check points

Resultant for check pomts by (m)
Homogenous. Normal | Non-Homogenous
Points {5 terms) {1- arder)
A5 0.51 1.67
G18 0.27 0.41
G27 053 061
[} Q00 1.00

Again. the homoyenous normal is better than the non-homogenous polynomial. The

comparison is represented at the solution points as;
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Figure (6) Resuhant residuals from the best models for 2D polynomials at data poiris

At the check points. the comparison is represented as;
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Figure (7) Best models for 2D polynomials at check points

Conceming the 2-D polynomials and as a final conclusion, the best model at data ponts
is 3" order normal polynomial. The best model at the check points is five terms mixed

multiple regression.

5-3 Three Dimension Surface Polynomials
The transformation of coordinates in 3 dimensions using different polynomials is

investigated. The results will be discussed and represented in the subsequent sections.
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a- 3D Homogenous Curvilinear Normal Polynomial

First and sccond order polynomials are applied to relate {¢.2..h) of a datum to the
corresponding (¢,2'h") of the other datum. Equations (10} are applied and 1he
coefficients are computed. The residuals at the data and check points are also compuied
with the statistics of their resuliants. At the data points, it is found that the second osder
gives minimum residual values at the daia points while at check points the first order is
beiter

b- 3D Hamogenous Curvilinear Conformal Case

Lquations (1]) are applied and the polynomial coefficients are obtained. The residuals
are computed. The resuliant residuals are computed with their statistics. It 1s found tha
the second order is better than the first order polynomial at the data points. At the check
points. the first order is belter than the second order.

¢- 3D Homogenous Cartesian Conformal Case

In this case. the rectangular coordinates (X, Y, Z) of one system are related 10 the
corresponding rectangular coordinates (X',Y",Z") of the other system. Equations (12) are
applied. in first and second order cases. The residuals are computed. The resuhant
residuals are computed from the residuals of X,Y,Z at the data points and their statistics.
It is found from the results that the first order gives minimum residual values at the data
points. The minimum residuals at check points are obtained from the first order.

d- 3D Non-homogenous Case

In this model. the rectangle coordinates (X. Y, Z) in one systemy arc related 1o the
comespondmng curvilinear coordinates (¢, ., h) in the other system. Equations {(13) are
applied and the residuals of (X, Y. Z) equations are computed at the data points. The
resultant residuals and their statistics are computed.

Itis found from the results that the second order gives better residual values at the data
paints while better residuals are obtained from the firsi order at the check points.

5-3-1 The Best Model Among 3-D Polynomials
The best four previous 3D polymomials are collected here for the sake of comparison

and choosing the best model among them. First, the resultant residuals at the data points

are tabalated. (rom the different solutions as follows:



Table (8) Comparison between all models used in 3D polynomial at data points.

Resultant Residuals at solution points by {m)
Homogenous Non Homogenous
Normal curvilinear |Conforhal curvilinear]  Cartesian normal Normal
Points (2 order) (2™ - order) (1* - order) {2" - order)
05 0.03 080 0.52 0.03
Al1 054 0.65 0.38 0.54
E? 0.29 0.78 072 0.29
F6 0.17 1.35 0.76 0.17
G16 0.05 0.75 0.69 0.05
G20 0.54 0.33 0.20 0.53
G21 0.02 0.30 Q.53 0.02
G23 0.26 0.39 0.67 0.26
M3 0.07 1.36 1.10 0.07

The results of the 2™ order homogenous normal curvilinear and the 2™ order non-

homogenous polynomials are identical. They are better than the other two.

The resultant residuals, a1 the check points, are also collected as follows:

Table (9) Comparison between all models used in3D polynomial at check points.

Resultanl Residiials at check points by {m)

Homogenous
Normal curvilinear [ Conformal curvilinear|| Cadesian narmai || Non Homogenous
Pornts {1" - order) (1" - order) (1" - orger) {1 - order)
A5 202 1.88 1.97 1.88
G18 0.82 0.80 0.75 0.53
G27 1.02 0.85 0.60 0.74
o1 0.90 0.91 0.82 0.90

At check points, the homogenous Cartesian 1" order and the non-homogenous 1% order

are the best and they are very close to cach other.

The resufiant residuals from the best four solutions, at data points are represenied as;
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Figure (8) Comparison between best medels used in 3D polynomial at data points

The resultant residuals at the check points are represented as;
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Figure (9) Comparison between best-models used in 3D polynomial at check poinis
5-4-2 The Best Model Among all 3D Models

Recalling that, at data points, the best model of Groupl solutions is chosen as 10

parameters model. Among all (3D) polynomials, the 2™ order non-homogenous or the

2™ order homogenous curvilinear polynomial is chosen as the best solution. The



following comparison, between these two solutions is made to choose the best solution

at the data points;

Table (10) The comparisen between best 3D models at data points.

Resultant residuals at selution points by (m)
(G3) polynomial (2'.‘3 order) KG1) Affine transformation
Points Non-Homogencgus normal 10 — parameters
05 0.03 0.67
A1 0.54 0.36
E7 0.29 0.78
F6 0.17 0.94
G16 0.05 0.58
G20 053 0.22
G21 0.02 0.22
G23 0.26 0.44
M3 0.07 1.82

At the data points. the best 3D solution is the non-homogenous polynomial. The
homogenous curvilinear polynomial gives the same best results. At the check points and
conceming the 3D models, Bursa and Molodensky were the best models. Amonyg the 3D
polynomials. the 1™ order homogenous Cartesian and the 1" order non-homogenous
polvnomials were the best. The comparison between the best twe models to chose the

best, as follows,

Table (11) The comparison between best models at check points.

Resultan! residuals for check ponts by (m)

Group (1) Simdarity Group (3) polynomial 120)

Points Bursa Non- hemogenous 1* order
AS 1.81 188
G186 018 053
G27 0.55 074
O1 1.10 0.90

Al the cheeh points. Bursa model is the best among all solutions. The following figures

represent the data in the above two tables
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Figure (11) Comparison between best models used in all groups at check points

As a final conclusion concerning the (3D) case, the best madel at data points is the g
order non homogenous and the homogenous curvilinear polynomials. The best solution

ai check points is Bursa or Molodensky model.

Conceming the (2D) solutions, it should be mentioned also that the best model. a1 data

potnts, is the 3" order normal polynomial. At the check points, the best model is the five

terms mixed muliiple regressions.
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6- Conclusions

Looking at all results, tabulated and illustrated in histograms, the following could he
concluded:

1- Both of Bursa and Moledensky models behave the same lowards the datz anz
check points,

2- The different assumptions of the central (initial) point in Molodenchs mode! &2 -
affect the results of the model. So, real or imaginary poin: could be wses

3- Changing the central (initjal) point in len-parameters mode! does nor affce: the resglic
exactly hike in Molodensky model,

4- Ten-parameters model gave shghtly beuter resuits ihan Bursa and Molodensk,
models.

3- Concemning 2D and 3D polynomials, the best model at the data poinis is not
necessary 10 be the best one at the check points, The former has always higher order
than the later.

0- The higher order polynomial curves itself more to fit the dala points as possible as it
can. Sa. it gives smail residuals at those points.

7- The check points do not share in forming the surface of the polynomiial, so it is
expected to have large residuals than those of the data points,

8- Generally, the polynomiais do not suit the geodetic datum like the similarity and
affine transformation models.

Y- Polynomials need dense common poinis to represent the relation between the o
concerning systems in good way. Then the residuals at the check points will he
improved.

Based on what are concluded, the following can be recommended:

I- Similarity transformation models could be used when few COMMOn points are
available.

2- Polynomials should be used in transformation when large number of common points
arc available.

3- Concerning the 2D transformations, the best model at the data poinis is the 3" order
normal polynomial and the best model at the check points is five terms mixed multiple

regression.
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4- Conceming the 3D transformations, the best model at the data points is the 2™ order
non homogeneous and the homogeneous curvilinear polynomials and the best model at
the check points is Bursa and Molodensky models.

5- The behavior of the transformation model towards the data points is not as important
for the user as the precision of the model at the check points. The user’s points can be
considered as check points. Therefore, the best mode! in 2D transformation is the five
lerms mixed multiple régression model, while the best model in 3D transformation is

Bursa or Molodensky model.
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